Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.349
Filtrar
1.
Gene ; 823: 146347, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35227853

RESUMO

Lipopolysaccharide (LPS)-induced endotoxemia alters intracochlear homeostasis and potentiates aminoglycoside-induced ototoxicity. However, the pathological mechanisms in the cochlea following systemic LPS-induced inflammation are unclear. In this study, three groups of mice received intraperitoneal injections [group A, saline control (n = 10); group B, 1 mg/kg LPS (n = 10); group C, 10 mg/kg LPS (n = 10)]. After 24 h, gene expression in cochlea samples was analyzed using DNA microarrays covering 28,853 genes in a duplicate manner. A total of 505 differentially expressed genes (DEGs) (≥2.0-fold change; p < 0.05) were identified. Interferon- and chemotaxis-related genes, including gbp2, gbp5, cxcl10, and Rnf125, were dose-dependently upregulated by LPS-induced endotoxemia. These results were verified by RT-qPCR. Upregulated DEGs were associated with inflammation, positive regulation of immune responses, and regulation of cell adhesion, while downregulated ones were associated with chemical synaptic transmission and the synaptic vesicle cycle. Protein-protein interaction included four functional clusters associated with interleukin-4, -10, and -13 and G protein-coupled receptor (GPCR) ligand binding; activation of matrix metalloproteinases and collagen degradation; recruitment of amyloid A proteins; and neutrophil degranulation. The findings of this study provide an additional basis on changes in the expression of genes in the cochlea in response to LPS-induced endotoxemia.


Assuntos
Cóclea/química , Endotoxemia/genética , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes/efeitos dos fármacos , Lipopolissacarídeos/efeitos adversos , Animais , Quimiocina CXCL10/genética , Cóclea/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Endotoxemia/induzido quimicamente , Feminino , Proteínas de Ligação ao GTP/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Injeções Intraperitoneais , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Distribuição Aleatória , Ubiquitina-Proteína Ligases/genética
2.
Neural Plast ; 2022: 5567174, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35096052

RESUMO

Sensorineural hearing loss (SNHL) is one of the most common causes of disability worldwide. Previous evidence suggests that reactive oxygen species (ROS) may play an important role in the occurrence and development of SNHL, while its mechanism remains unclear. We cultured dissected organs of Corti in medium containing different concentrations (0, 0.25, 0.5, 0.75, 1, and 1.25 mM) of hydrogen peroxide (H2O2) and established a four-concentration model of 0, 0.5, 0.75, and 1 mM to study different degrees of damage. We examined ROS-induced mitochondrial damage and the role of sirtuin 3 (SIRT3). Our results revealed that the number of ribbon synapses and hair cells appeared significantly concentration-dependent decrease with exposure to H2O2. Outer hair cells (OHCs) and inner hair cells (IHCs) began to be lost, and activation of apoptosis of hair cells (HCs) was observed at 0.75 mM and 1 mM H2O2, respectively. In contrast with the control group, the accumulation of ROS was significantly higher, and the mitochondrial membrane potential (MMP) was lower in the H2O2-treated groups. Furthermore, the expression of SIRT3, FOXO3A, and SOD2 proteins declined, except for an initial elevation of SIRT3 between 0 and 0.75 mM H2O2. Administration of the selective SIRT3 inhibitor 3-(1H-1,2,3-triazol-4-yl) pyridine resulted in increased damage to the cochlea, including loss of ribbon synapses and hair cells, apoptosis of hair cells, more production of ROS, and reduced mitochondrial membrane potential. Thoroughly, our results highlight that ROS-induced mitochondrial oxidative damage drives hair cell degeneration and apoptosis. Furthermore, SIRT3 is crucial for preserving mitochondrial function and protecting the cochlea from oxidative damage and may represent a possible therapeutic target for SNHL.


Assuntos
Cóclea/efeitos dos fármacos , Peróxido de Hidrogênio/administração & dosagem , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/administração & dosagem , Sirtuína 3/metabolismo , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Cóclea/citologia , Cóclea/metabolismo , Camundongos , Mitocôndrias/metabolismo , Superóxido Dismutase/metabolismo
3.
Toxicol Lett ; 354: 56-64, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34757176

RESUMO

The ototoxic mechanisms of cisplatin on the organ of Corti and spiral ganglion neurons have been extensively studied, while few studies have been focused on the stria vascularis (SV). Herein, we verified the functional and morphological impairment in SV induced by a single injection of cisplatin (12 mg/kg, I.P.), represented by a reduction in Endocochlear Potentials (EP) and strial atrophy, and explored underlying mechanisms. Our results revealed increased extravasation of chromatic tracers (Evans blue dye and FITC-dextran) around microvessels after cisplatin exposure. The increased vascular permeability could be attributed to changes of pericytes (PCs) and perivascular-resident macrophage-like melanocytes (PVM/Ms) in number or morphology, as well as the enhanced level of HIF-1α and downstream VEGF. This capillary leakage led to a high accumulation of cisplatin in the perivascular space in SV, and disrupted the integrity of blood-labyrinth barrier (BLB). Also, tight junction (ZO-1) loosening and Na+, K+-ATPase damage was considered to be other critical contributors of BLB breakdown, which resulted in EP drop and consequent hearing loss. This study explored the role of stria vascularis in cisplatin-induced ototoxicity in terms of BLB hyperpermeability and pointed to a novel therapeutic target for the prevention of cisplatin-related hearing loss.


Assuntos
Antineoplásicos/toxicidade , Cisplatino/toxicidade , Cóclea/irrigação sanguínea , Cóclea/efeitos dos fármacos , Ototoxicidade/etiologia , Permeabilidade/efeitos dos fármacos , Estria Vascular/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Masculino , Camundongos
4.
Genes Genomics ; 44(1): 1-7, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34800260

RESUMO

BACKGROUND: Cisplatin (CP) is an effective anticancer drug broadly used for various types of cancers, but it has shown ototoxicity that results from oxidative stress. Berberine has been reported for its anti-oxidative stress suggesting its therapeutic potential for many diseases such as colitis, diabetes, and vascular dementia. OBJECTIVE: Organ of Corti of postnatal day 3 mouse cochlear explants were used to compare hair cells after the treatment with cisplatin alone or with berberine chloride (BC) followed by CP. METHODS: We investigated the potential of the anti-oxidative effect of BC against the cisplatin-induced ototoxicity. We observed a reduced aberrant bundle of stereocilia in hair cells in CP with BC pre-treated group. Caspase-3 immunofluorescence and TUNEL assay supported the hypothesis that BC attenuates the apoptotic signals induced by CP. Reactive oxygen species level in the mitochondria were investigated by MitoSOX Red staining and the mitochondrial membrane potentials were compared by JC-1 assay. RESULTS: BC decreased ROS generation with preserved mitochondrial membrane potentials in mitochondria as well as reduced DNA fragmentation in hair cells. In summary, our data indicate that BC might act as antioxidant against CP by reducing the stress in mitochondria resulting in cell survival. CONCLUSION: Our result suggests the therapeutic potential of BC for prevention of the detrimental effect of CP-induced ototoxicity.


Assuntos
Berberina/farmacologia , Cloretos/farmacologia , Cisplatino/efeitos adversos , Ototoxicidade/prevenção & controle , Animais , Antineoplásicos/efeitos adversos , Apoptose/efeitos dos fármacos , Berberina/química , Caspase 3/metabolismo , Células Cultivadas , Cloretos/química , Cóclea/citologia , Cóclea/efeitos dos fármacos , Cóclea/metabolismo , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Auditivas/metabolismo , Marcação In Situ das Extremidades Cortadas , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Órgão Espiral/citologia , Órgão Espiral/efeitos dos fármacos , Órgão Espiral/metabolismo , Ototoxicidade/etiologia , Ototoxicidade/metabolismo , Substâncias Protetoras/farmacologia , Espécies Reativas de Oxigênio/metabolismo
5.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34884516

RESUMO

Telmisartan (TM) has been proposed to relieve inflammatory responses by modulating peroxisome proliferator activator receptor-γ (PPARγ) signaling. This study aimed to investigate the protective effects of TM on kanamycin(KM)-induced ototoxicity in rats. Forty-eight, 8-week-old female Sprague Dawley rats were divided into four groups: (1) control group, (2) TM group, (3) KM group, and (4) TM + KM group. Auditory brainstem response was measured. The histology of the cochlea was examined. The protein expression levels of angiotensin-converting enzyme 2 (ACE2), HO1, and PPARγ were measured by Western blotting. The auditory threshold shifts at 4, 8, 16, and 32 kHz were lower in the TM + KM group than in the KM group (all p < 0.05). The loss of cochlear outer hair cells and spiral ganglial cells was lower in the TM + KM group than in the KM group. The protein expression levels of ACE2, PPARγ, and HO1 were higher in the KM group than in the control group (all p < 0.05). The TM + KM group showed lower expression levels of PPARγ and HO1 than the KM group.TM protected the cochlea from KM-induced injuries in rats. TM preserved hearing levels and attenuated the increase in PPARγ and HO1 expression levels in KM-exposed rat cochleae.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Canamicina/toxicidade , Ototoxicidade/tratamento farmacológico , PPAR gama/metabolismo , Telmisartan/farmacologia , Enzima de Conversão de Angiotensina 2/genética , Animais , Antibacterianos/toxicidade , Anti-Hipertensivos/farmacologia , Limiar Auditivo/efeitos dos fármacos , Cóclea/efeitos dos fármacos , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Feminino , Heme Oxigenase (Desciclizante)/genética , Ototoxicidade/etiologia , Ototoxicidade/metabolismo , Ototoxicidade/patologia , PPAR gama/genética , Ratos , Ratos Sprague-Dawley
6.
PLoS One ; 16(12): e0261049, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34879107

RESUMO

OBJECTIVE: Determine effective preloading timepoints for D-methionine (D-met) otoprotection from steady state or impulse noise and impact on cochlear and serum antioxidant measures. DESIGN: D-met started 2.0-, 2.5-, 3.0-, or 3.5- days before steady-state or impulse noise exposure with saline controls. Auditory brainstem response (ABRs) measured from 2 to 20 kHz at baseline and 21 days post-noise. Samples were then collected for serum (SOD, CAT, GR, GPx) and cochlear (GSH, GSSG) antioxidant levels. STUDY SAMPLE: Ten Chinchillas per group. RESULTS: Preloading D-met significantly reduced ABR threshold shifts for both impulse and steady state noise exposures but with different optimal starting time points and with differences in antioxidant measures. For impulse noise exposure, the 2.0, 2.5, and 3.0 day preloading start provide significant threshold shift protection at all frequencies. Compared to the saline controls, serum GR for the 3.0 and 3.5 day preloading groups was significantly increased at 21 days with no significant increase in SOD, CAT or GPx for any impulse preloading time point. Cochlear GSH, GSSG, and GSH/GSSG ratio were not significantly different from saline controls at 21 days post noise exposure. For steady state noise exposure, significant threshold shift protection occurred at all frequencies for the 3.5, 3.0 and 2.5 day preloading start times but protection only occurred at 3 of the 6 test frequencies for the 2.0 day preloading start point. Compared to the saline controls, preloaded D-met steady-state noise groups demonstrated significantly higher serum SOD for the 2.5-3.5 day starting time points and GPx for the 2.5 day starting time but no significant increase in GR or CAT for any preloading time point. Compared to saline controls, D-met significantly increased cochlear GSH concentrations in the 2 and 2.5 day steady-state noise exposed groups but no significant differences in GSSG or the GSH/GSSG ratio were noted for any steady state noise-exposed group. CONCLUSIONS: The optimal D-met preloading starting time window is earlier for steady state (3.5-2.5 days) than impulse noise (3.0-2.0). At 21 days post impulse noise, D-met increased serum GR for 2 preloading time points but not SOD, CAT, or GpX and not cochlear GSH, GSSG or the GSH/GSSG ratio. At 21 days post steady state noise D-met increased serum SOD and GPx at select preloading time points but not CAT or GR. However D-met did increase the cochlear GSH at select preloading time points but not GSSG or the GSH/GSSG ratio.


Assuntos
Antioxidantes/farmacologia , Limiar Auditivo , Cóclea/efeitos dos fármacos , Perda Auditiva Provocada por Ruído/prevenção & controle , Metionina/farmacologia , Substâncias Protetoras/farmacologia , Animais , Chinchila , Cóclea/patologia , Perda Auditiva Provocada por Ruído/etiologia , Perda Auditiva Provocada por Ruído/patologia , Masculino
7.
Sci Rep ; 11(1): 20224, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34642354

RESUMO

The V-shaped arrangement of hair bundles on cochlear hair cells is critical for auditory sensing. However, regulation of hair bundle arrangements has not been fully understood. Recently, defects in hair bundle arrangement were reported in postnatal Dishevelled-associating protein (ccdc88c, alias Daple)-deficient mice. In the present study, we found that adult Daple-/- mice exhibited hearing disturbances over a broad frequency range through auditory brainstem response testing. Consistently, distorted patterns of hair bundles were detected in almost all regions, more typically in the basal region of the cochlear duct. In adult Daple-/- mice, apical microtubules were irregularly aggregated, and the number of microtubules attached to plasma membranes was decreased. Similar phenotypes were manifested upon nocodazole treatment in a wild type cochlea culture without affecting the microtubule structure of the kinocilium. These results indicate critical role of Daple in hair bundle arrangement through the orchestration of apical microtubule distribution, and thereby in hearing, especially at high frequencies.


Assuntos
Proteínas de Transporte/genética , Cóclea/patologia , Perda Auditiva/patologia , Microtúbulos/patologia , Estereocílios/patologia , Animais , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Cóclea/citologia , Cóclea/efeitos dos fármacos , Cóclea/metabolismo , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico , Técnicas de Inativação de Genes , Perda Auditiva/genética , Camundongos , Microscopia Eletrônica de Varredura , Microtúbulos/metabolismo , Nocodazol/farmacologia , Técnicas de Cultura de Órgãos , Estereocílios/metabolismo
8.
Int J Mol Sci ; 22(18)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34576224

RESUMO

Delivery of substances into the inner ear via local routes is increasingly being used in clinical treatment. Studies have focused on methods to increase permeability through the round window membrane (RWM) and enhance drug diffusion into the inner ear. However, the clinical applications of those methods have been unclear and few studies have investigated the efficacy of methods in an inner ear injury model. Here, we employed the medium chain fatty acid caprate, a biologically safe, clinically applicable substance, to modulate tight junctions of the RWM. Intratympanic treatment of sodium caprate (SC) induced transient, but wider, gaps in intercellular spaces of the RWM epithelial layer and enhanced the perilymph and cochlear concentrations/uptake of dexamethasone. Importantly, dexamethasone co-administered with SC led to significantly more rapid recovery from noise-induced hearing loss at 4 and 8 kHz, compared with the dexamethasone-only group. Taken together, our data indicate that junctional modulation of the RWM by SC enhances dexamethasone uptake into the inner ear, thereby hastening the recovery of hearing sensitivity after noise trauma.


Assuntos
Dexametasona/farmacocinética , Orelha Interna/efeitos dos fármacos , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Janela da Cóclea/efeitos dos fármacos , Animais , Cóclea/efeitos dos fármacos , Ácidos Decanoicos/farmacologia , Dexametasona/administração & dosagem , Difusão , Sistemas de Liberação de Medicamentos/métodos , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Ácidos Graxos/química , Audição , Masculino , Microscopia Eletrônica de Transmissão , Perilinfa/efeitos dos fármacos , Permeabilidade , Ratos
9.
Biomed Pharmacother ; 143: 112149, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34507120

RESUMO

Age-related hearing loss (AHL) is the most common sensory disorder of aged population. Currently, one of the most important sources of experimental medicine for AHL is medicinal plants. This study performed the first investigation of the effect of thymoquinone (TQ), a potent antioxidant, on AHL. Here, we used inbred C57BL/6J mice (B6 mice) as a successful experimental model of the early onset of AHL. The behavioral assessment of hearing revealed that the injection of a high dose of TQ (40 mg/kg; TQ40) significantly improved the auditory sensitivity of B6 mice at all tested frequencies (8, 16 and 22 kHz). Histological sections of cochlea from B6 mice injected with a low dose (20 mg/kg; TQ20) and high dose showed relatively less degenerative signs in the modiolus, hair cells and spiral ligaments, the main constituents of the cochlea. In addition, TQ40 completely restored the normal pattern of hair cells in B6 mice, as shown in scanning electron micrographs. Our data indicated that TQ20 and TQ40 reduced levels of Bak1-mediated apoptosis in the cochlea of B6 mice. Interestingly, the level of Sirt1, a positive regulator of autophagy, was significantly increased in B6 mice administered TQ40. In conclusion, TQ relieves the symptoms of AHL by downregulating Bak1 and activating Sirt1 in the cochlea of B6 mice.


Assuntos
Antioxidantes/farmacologia , Benzoquinonas/farmacologia , Cóclea/efeitos dos fármacos , Audição/efeitos dos fármacos , Presbiacusia/tratamento farmacológico , Sirtuína 1/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Animais , Apoptose/efeitos dos fármacos , Limiar Auditivo/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Cóclea/metabolismo , Cóclea/fisiopatologia , Cóclea/ultraestrutura , Modelos Animais de Doenças , Feminino , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/ultraestrutura , Camundongos Endogâmicos C57BL , Presbiacusia/metabolismo , Presbiacusia/patologia , Presbiacusia/fisiopatologia , Transdução de Sinais , Sirtuína 1/genética , Proteína Killer-Antagonista Homóloga a bcl-2/genética
10.
Mar Drugs ; 19(8)2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34436282

RESUMO

One of the well-known causes of hearing loss is noise. Approximately 31.1% of Americans between the ages of 20 and 69 years (61.1 million people) have high-frequency hearing loss associated with noise exposure. In addition, recurrent noise exposure can accelerate age-related hearing loss. Phlorofucofuroeckol A (PFF-A) and dieckol, polyphenols extracted from the brown alga Ecklonia cava, are potent antioxidant agents. In this study, we investigated the effect of PFF-A and dieckol on the consequences of noise exposure in mice. In 1,1-diphenyl-2-picrylhydrazyl assay, dieckol and PFF-A both showed significant radical-scavenging activity. The mice were exposed to 115 dB SPL of noise one single time for 2 h. Auditory brainstem response(ABR) threshold shifts 4 h after 4 kHz noise exposure in mice that received dieckol were significantly lower than those in the saline with noise group. The high-PFF-A group showed a lower threshold shift at click and 16 kHz 1 day after noise exposure than the control group. The high-PFF-A group also showed higher hair cell survival than in the control at 3 days after exposure in the apical turn. These results suggest that noise-induced hair cell damage in cochlear and the ABR threshold shift can be alleviated by dieckol and PFF-A in the mouse. Derivatives of these compounds may be applied to individuals who are inevitably exposed to noise, contributing to the prevention of noise-induced hearing loss with a low probability of adverse effects.


Assuntos
Antioxidantes/uso terapêutico , Benzofuranos/uso terapêutico , Dioxinas/uso terapêutico , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Kelp , Extratos Vegetais/uso terapêutico , Animais , Antioxidantes/farmacologia , Organismos Aquáticos , Benzofuranos/farmacologia , Cóclea/efeitos dos fármacos , Dioxinas/farmacologia , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Células Ciliadas Auditivas/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fitoterapia , Extratos Vegetais/farmacologia
11.
Acta Otolaryngol ; 141(8): 736-741, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34346271

RESUMO

BACKGROUND: Otological diseases including Meniere's disease (MD) involve endolymphatic hydrops (EH), which can be visualized by magnetic resonance imaging (MRI) with gadolinium contrast agents, but the temporal changes of contrast in the inner ear have not been evaluated. OBJECTIVES: We investigated the permeability of the blood-perilymph barrier (BPB) in ears with EH to evaluate the severity of the inner ear disturbances. MATERIALS AND METHODS: The study included 32 ears from 16 patients with EH or related diseases who underwent MRI. The permeability of the BPB was assessed by the signal-intensity ratio (SIR) at four-time points: before and at 10 min, 4 h, and 24 h after administration of gadolinium for assessing EH. RESULTS: Cochlear EH was found in 25 of the 32 ears, and vestibular EH in 11. The rate of EH was significantly higher in symptomatic ears; however, the existence of EH was not related to SIR values. Nevertheless, SIR values in the basal turn were significantly higher 4 and 24 h after injection of gadolinium in patients aged ≥50 years. CONCLUSION AND SIGNIFICANCE: Higher SIR values observed in older patients with EH indicate severe disturbances of the BPB in the cochlea, which may account for intractable inner ear disturbances in older patients.


Assuntos
Permeabilidade Capilar , Orelha Interna/fisiopatologia , Hidropisia Endolinfática/fisiopatologia , Perilinfa/fisiologia , Adulto , Idoso , Audiometria de Tons Puros , Cóclea/diagnóstico por imagem , Cóclea/efeitos dos fármacos , Meios de Contraste/farmacologia , Orelha Interna/irrigação sanguínea , Orelha Interna/diagnóstico por imagem , Hidropisia Endolinfática/diagnóstico por imagem , Feminino , Gadolínio/farmacologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Doença de Meniere , Pessoa de Meia-Idade , Perilinfa/diagnóstico por imagem , Perilinfa/efeitos dos fármacos
12.
Mol Brain ; 14(1): 105, 2021 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-34217338

RESUMO

Recently, a pathological condition called cochlear synaptopathy has been clarified, and as a disorder of the auditory nerve synapses that occurs prior to failure of hair cells, it has been recognized as a major cause of sensorineural hearing loss. However, cochlear synaptopathy is untreatable. Inhibition of rho-associated coiled-coil containing protein kinase (ROCK), a serine-threonine protein kinase, has been reported to have neuroprotective and regenerative effects on synaptic pathways in the nervous system, including those in the inner ear. We previously demonstrated the regenerative effect of the ROCK inhibitor, Y-27632, on an excitotoxic cochlear nerve damage model in vitro. In this study, we aimed to validate the effect of ROCK inhibition on mice with cochlear synaptopathy induced by laser-induced shock wave (LISW) in vivo. After the elevation of ROCK1/2 expression in the damaged cochlea was confirmed, we administered Y-27632 locally via the middle ear. The amplitude of wave I in the auditory brainstem response and the number of synapses in the Y-27632-treated cochlea increased significantly. These results clearly demonstrate that ROCK inhibition has a promising clinical application in the treatment of cochlear synaptopathy, which is the major pathology of sensorineural hearing loss.


Assuntos
Amidas/farmacologia , Cóclea/patologia , Lasers , Piridinas/farmacologia , Sinapses/patologia , Quinases Associadas a rho/antagonistas & inibidores , Animais , Cóclea/efeitos dos fármacos , Perda Auditiva Neurossensorial/patologia , Camundongos , Fármacos Neuroprotetores/farmacologia , Sinapses/efeitos dos fármacos , Quinases Associadas a rho/metabolismo
13.
Neuropharmacology ; 196: 108707, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34246683

RESUMO

Intracochlear electrical stimulation (ES) generated by cochlear implants (CIs) is used to activate auditory nerves to restore hearing perception in deaf subjects and those with residual hearing who use electroacoustic stimulation (EAS) technology. Approximately 1/3 of EAS recipients experience loss of residual hearing a few months after ES activation, but the underlying mechanism is unknown. Clinical evidence indicates that the loss is related to the previous history of noise-induced hearing loss (NIHL). In this report, we investigated the impact of intracochlear ES on oxidative stress levels and synaptic counts in inner hair cells (IHCs) of the apical, middle and basal regions of guinea pigs with normal hearing (NH) and NIHL. Our results demonstrated that intracochlear ES with an intensity of 6 dB above the thresholds of electrically evoked compound action potentials (ECAPs) could induce the elevation of oxidative stress levels, resulting in a loss of IHC synapses near the electrodes in the basal and middle regions of the NH cochleae. Furthermore, the apical region of cochleae with NIHL were more susceptible to synaptic loss induced by relatively low-intensity ES than that of NH cochleae, resulting from the additional elevation of oxidative stress levels and the reduced antioxidant capability throughout the whole cochlea.


Assuntos
Cóclea/patologia , Implantes Cocleares , Estimulação Elétrica , Células Ciliadas Auditivas Internas/patologia , Perda Auditiva Provocada por Ruído/fisiopatologia , Estresse Oxidativo/fisiologia , Sinapses/patologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Aldeídos , Animais , Antioxidantes/farmacologia , Cóclea/efeitos dos fármacos , Cóclea/fisiopatologia , Potenciais Evocados Auditivos do Tronco Encefálico , Ácidos Graxos Insaturados/metabolismo , Cobaias , Células Ciliadas Auditivas Internas/efeitos dos fármacos , Perda Auditiva Provocada por Ruído/metabolismo , Hidroxiácidos/metabolismo , Isoindóis/farmacologia , Compostos Organosselênicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Índice de Gravidade de Doença , Sinapses/efeitos dos fármacos , Tirosina/análogos & derivados , Tirosina/efeitos dos fármacos , Tirosina/metabolismo
14.
Molecules ; 26(12)2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34199327

RESUMO

The application of insulin-like growth factor 1 (IGF-1) to the round window membrane (RWM) is an emerging treatment for inner ear diseases. RWM permeability is the key factor for efficient IGF-1 delivery. Ultrasound microbubbles (USMBs) can increase drug permeation through the RWM. In the present study, the enhancing effect of USMBs on the efficacy of IGF-1 application and the treatment effect of USMB-mediated IGF-1 delivery for noise-induced hearing loss (NIHL) were investigated. Forty-seven guinea pigs were assigned to three groups: the USM group, which received local application of recombinant human IGF-1 (rhIGF-1, 10 µg/µL) following application of USMBs to the RWM; the RWS group, which received IGF-1 application alone; and the saline-treated group. The perilymphatic concentration of rhIGF-1 in the USM group was 1.95- and 1.67- fold of that in the RWS group, 2 and 24 h after treatment, respectively. After 5 h of 118 dB SPL noise exposure, the USM group had the lowest threshold shift in auditory brainstem response, least loss of cochlear outer hair cells, and least reduction in the number of synaptic ribbons on postexposure day 28 among the three groups. The combination of USMB and IGF-1 led to a better therapeutic response to NIHL. Two hours after treatment, the USM group had significantly higher levels of Akt1 and Mapk3 gene expression than the other two groups. The most intense immunostaining for phosphor-AKT and phospho-ERK1/2 was detected in the cochlea in the USM group. These results suggested that USMB can be applied to enhance the efficacy of IGF-1 therapy in the treatment of inner ear diseases.


Assuntos
Cóclea/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Fator de Crescimento Insulin-Like I/farmacologia , Microbolhas/uso terapêutico , Janela da Cóclea/efeitos dos fármacos , Ondas Ultrassônicas , Animais , Cóclea/metabolismo , Modelos Animais de Doenças , Cobaias , Perda Auditiva Provocada por Ruído/metabolismo , Perda Auditiva Provocada por Ruído/patologia , Janela da Cóclea/metabolismo
15.
Int J Mol Sci ; 22(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070066

RESUMO

Megalin has been proposed as an endocytic receptor for aminoglycosides as well as estrogen and androgen. We aimed to investigate the otoprotective effects of antiandrogens (flutamide, FM) on kanamycin (KM)-induced hearing loss in rats. Rats were divided into four groups. The KM group was administered KM (20 mg/kg/day) for 5 days, while the FM group received FM (15 mg/kg/day) for 10 days. In the KM + FM group, KM and FM (15 mg/kg/day) were simultaneously injected for 5 days and then FM was injected for 5 days. Auditory brainstem responses were measured. Western blotting and/or quantitative reverse transcriptase-polymerase chain reaction were performed for megalin, cytochrome P450 1A1 (Cyp1a1), Cyp1b1, metallothionein 1A (MT1A), MT2A, tumor necrosis factor (TNF)-α, caspase 3, and cleaved caspase 3. The FM + KM group showed attenuated auditory thresholds when compared with the KM group at 4, 8, 16, and 32 kHz (all p < 0.05). The KM + FM group showed lower megalin and Cyp1b1 levels than the KM group (all p < 0.05). The KM + FM group revealed lower MT1A, TNFα, and caspase 3 protein levels, compared with those in the KM group (all p < 0.05). Androgen receptor inhibition protects against cochlear injuries in KM-induced hearing loss rats by attenuating megalin expression, revealing anti-inflammatory and anti-apoptotic effects.


Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Perda Auditiva Neurossensorial/prevenção & controle , Animais , Antibacterianos/toxicidade , Limiar Auditivo/efeitos dos fármacos , Cóclea/efeitos dos fármacos , Cóclea/patologia , Cóclea/fisiopatologia , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1B1/genética , Citocromo P-450 CYP1B1/metabolismo , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Flutamida/farmacologia , Expressão Gênica/efeitos dos fármacos , Perda Auditiva Neurossensorial/induzido quimicamente , Perda Auditiva Neurossensorial/fisiopatologia , Canamicina/toxicidade , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Masculino , Metalotioneína/genética , Metalotioneína/metabolismo , Substâncias Protetoras/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo
17.
Acta Otolaryngol ; 141(sup1): 135-156, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33818265

RESUMO

Intra-cochlear fibrous tissue formation around the electrode following cochlear implantation affects the electrode impedance as well as electrode explantation during reimplantation surgeries. Applying corticosteroids in cochlear implantation is one way of minimizing the intra-cochlear fibrous tissue formation around the electrode. It were J. Kiefer, C. von Ilberg, and W. Gstöttner who proposed the first idea on drug delivery application in cochlear implantation to MED-EL in the year 2000. During the twenty years of translational research efforts at MED-EL in collaboration with several clinics and research institutions from across the world, preclinical safety and efficacy of corticosteroids were performed leading to the final formulation of the electrode design. In parallel to the drug eluting CI electrode development, MED-EL also invested research efforts into developing tools enabling delivery of pharmaceutical agents of surgeon's choice inside the cochlea. The inner ear catheter designed to administer drug substances into the cochlea was CE marked in 2020. A feasibility study in human subjects with MED-EL CI featuring dexamethasone-eluting electrode array started in June 2020. This article covers the milestones of translational research towards the drug delivery in CI application that took place in association with MED-EL.


Assuntos
Implante Coclear/métodos , Fármacos Neuroprotetores/administração & dosagem , Complicações Pós-Operatórias/prevenção & controle , Antioxidantes/administração & dosagem , Limiar Auditivo/efeitos dos fármacos , Cóclea/efeitos dos fármacos , Implante Coclear/história , Implantes Cocleares/história , Dexametasona/administração & dosagem , Glucocorticoides/administração & dosagem , História do Século XX , História do Século XXI , Humanos , Triancinolona/administração & dosagem
18.
Neurotox Res ; 39(4): 1227-1237, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33900547

RESUMO

Paraquat, a superoxide generator, can damage the cochlea causing an ototoxic hearing loss. The purpose of the study was to determine if deletion of Bak, a pro-apoptotic gene, would reduce paraquat ototoxicity or if deletion of Sirt3, which delays age-related hearing loss under caloric restriction, would increase paraquat ototoxicity. We tested these two hypotheses by treating postnatal day 3 cochlear cultures from Bak±, Bak-/-, Sirt3±, Sirt3-/-, and WT mice with paraquat and compared the results to a standard rat model of paraquat ototoxicity. Paraquat damaged nerve fibers and dose-dependently destroyed rat outer hair cells (OHCs) and inner hair cells (IHCs). Rat hair cell loss began in the base of the cochlea with a 10 µM dose and as the dose increased from 50 to 500 µM, the hair cell loss increased near the base of the cochlea and spread toward the apex of the cochlea. Rat OHC losses were consistently greater than IHC losses. Unexpectedly, in all mouse genotypes, paraquat-induced hair cell lesions were maximal near the apex of the cochlea and minimal near the base. This unusual damage gradient is opposite to that seen in paraquat-treated rats and in mice and rats treated with other ototoxic drugs. However, paraquat always induced greater OHC loss than IHC loss in all mouse strains. Contrary to our hypothesis, Bak deficient mice were more vulnerable to paraquat ototoxicity than WT mice (Bak-/- > Bak± > WT), suggesting that Bak plays a protective role against hair cell stress. Also, contrary to expectation, Sirt3-deficient mice did not differ significantly from WT mice, possibly due to the fact that Sirt3 was not experimentally upregulated in Sirt3-expressing mice prior to paraquat treatment. Our results show for the first time a gradient of ototoxic damage in mice that is greater in the apex than the base of the cochlea.


Assuntos
Células Ciliadas Auditivas Internas/efeitos dos fármacos , Células Ciliadas Auditivas Externas/efeitos dos fármacos , Herbicidas/toxicidade , Paraquat/toxicidade , Sirtuína 3/deficiência , Proteína Killer-Antagonista Homóloga a bcl-2/deficiência , Animais , Animais Recém-Nascidos , Células Cultivadas , Cóclea/efeitos dos fármacos , Cóclea/metabolismo , Cóclea/patologia , Relação Dose-Resposta a Droga , Feminino , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/patologia , Células Ciliadas Auditivas Externas/metabolismo , Células Ciliadas Auditivas Externas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Sirtuína 3/genética , Proteína Killer-Antagonista Homóloga a bcl-2/genética
19.
J Chem Neuroanat ; 114: 101956, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33831513

RESUMO

Noise-induced hearing loss (NIHL) is the second most common cause of acquired hearing loss. Acoustic trauma can cause oxidative damage in the cochlear hair cells (HCs) through apoptotic pathways. Apelin is a newly discovered neuropeptide with neuroprotective effects against the oxidative stress in neurodegenerative disorder. We investigated the preventive effects of apelin-13 on the cochlear HCs and spiral ganglion neurons (SGNs) against acoustic trauma via Sirtuin-1 (Sirt-1) regulation in rats. Animals were assigned to control, control + apelin-13 (50 or 100 µg/kg, ip), and noise exposure groups without any treatment or were administered apelin-13 (50 or 100 µg/kg, ip) and EX-527 (an inhibitor of Sirt-1) prior to each noise session. In the noise groups, 110 dB white noise was applied for 6 h per 5 days. Pre- and post-exposure distortion product otoacoustic emissions (DPOAE) and cochlear superoxide dismutase (SOD) activity were assessed. Western blot evaluated the cochlear protein expressions of Sirt-1, cleaved-caspase-3, Bax, and Bcl-2. Cell apoptosis was detected through TUNEL staining. Immunofluorescence was used to examine expression of HCs and SGNs specific protein. DPOAE level were significantly improved in the noise exposure group receiving 100 µg/kg apelin-13. At high doses, apelin augmented SOD levels in the rat cochlea subjected to noise. Apelin 100 markedly increased Sirt-1, and decreased cleaved- caspase-3 expression as well as Bax/Bcl-2 ratio in the cochlea tissue of noise-exposed rats. These findings suggest the promising therapeutic potential of apelin-13 for the prevention of noise-induced injury to cochlea and hearing loss.


Assuntos
Cóclea/efeitos dos fármacos , Perda Auditiva Provocada por Ruído/patologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Fármacos Neuroprotetores/farmacologia , Sirtuína 1/biossíntese , Animais , Apoptose/efeitos dos fármacos , Cóclea/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Perda Auditiva Provocada por Ruído/metabolismo , Masculino , Ratos , Ratos Wistar
20.
Int Immunopharmacol ; 95: 107576, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33770730

RESUMO

Inflammation is involved in noise-induced hearing loss (NIHL), but the mechanism is still unknown. The NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, which triggers the inflammatory cascade, has been implicated in several inflammatory diseases in response to oxidative stress. However, whether the NLRP3 inflammasome is a key factor for permanent NIHL is still unknown. In this study, quantitative real-time polymerase chain reaction (qPCR), western blot, and enzyme-linked immunosorbent assays (ELISAs) demonstrated that the expression levels of activated caspase-1, interleukin (IL)-1ß, IL-18, and NLRP3 were significantly increased in the cochleae of mice exposed to broadband noise (120 dB) for 4 h, compared with the control group. These results indicate that the activation of inflammasomes in the cochleae of mice during the pathological process of NIHL as well as NLRP3, a sensor protein of reactive oxygen species (ROS), may be key factors for inflammasome assembly and subsequent inflammation in cochleae. Moreover, many recent studies have revealed that NEK7 is an important component and regulator of NLRP3 inflammasomes by interacting with NLRP3 directly and that these interactions can be interrupted by oridonin. Here, we further determined that treatment with oridonin could indeed interrupt the interaction between NLRP3 and NEK7 as well as inhibit the downstream inflammasome activation in mouse cochleae after noise exposure. Furthermore, we tested anakinra, another inflammatory inhibitor, and it was shown to partially alleviate the degree of hearing impairment in some frequencies in an NIHL mouse model. These discoveries suggest that inhibiting NLRP3 inflammasomes and the downstream signaling pathway may provide a new strategy for the clinical treatment of NIHL.


Assuntos
Anti-Inflamatórios/uso terapêutico , Diterpenos do Tipo Caurano/uso terapêutico , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Inflamassomos/antagonistas & inibidores , Quinases Relacionadas a NIMA/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Animais , Anti-Inflamatórios/farmacologia , Cóclea/efeitos dos fármacos , Cóclea/imunologia , Citocinas/imunologia , Diterpenos do Tipo Caurano/farmacologia , Perda Auditiva Provocada por Ruído/imunologia , Inflamassomos/imunologia , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Camundongos Endogâmicos C57BL , Quinases Relacionadas a NIMA/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...